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The case of one-dimensional stationary filtration in an inhomogeneous porous medium with a fractal structure
has been investigated. The fluid was assumed to be volumetrically incompressible. It has been shown that the
resistance of the medium grows with increase in the fractal dimension α, whereas the flow rate of the fluid
sharply drops.

Study of filtration in porous media with a fractal structure requires that the scope of ordinary geometric rep-
resentations be exceeded and the methods of fractal theory be used [1–7]. Not uncommon are cases of disagreement
of the results obtained by standard theoretical investigations with practice [3]. Apparently, the reason is that the fractal
structure of a porous medium is disregarded, although in the majority of cases it has a fractal structure.

Study of filtration in a porous medium with a fractal structure has been the focus of [2, 3, 5, 6]. However,
the state-of-the art of development and exploitation of oil pools and gas wells requires its further development. There-
fore, study of filtration in porous media with a fractal structure and determination, on this basis, of the properties of
systems is of both scientific and practical interest.

In this work, we consider the case of one-dimensional stationary filtration in an inhomogeneous medium with
a fractal structure. The fluid will be assumed to be volumetrically incompressible; then the original equation will have
the form [1, 2]
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The boundary conditions are

Px=0 = P1 ,     Px=l = P2 . (2)

Integrating (1), we obtain
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Integration of Eq. (3) is by the methods of integration of differential equations of fractional order according to the fol-
lowing formula [6]:
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From Eq. (3) of fractional order with account for (2) we obtain [4, 6]

P
P2

 = β + (1 − β) ξα
 , (4)

where ξ = x/l and β = P1
 ⁄ P2.

The flow rate of the fluid for media with a fractal structure may be determined according to Darcy’s law [1]:
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From (5) with account for (3) and (4) we will have [6]
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where lα = (l ⁄ δ)δα.
Equation (6) may be reduced to the form
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 . (7)

The results of numerical calculations from formulas (4) and (7) for the following values of the parameters —
P1 = 15 MPa, P2 = 10 MPa, β = 1.5, a0 = 1 mα−1, ξ = [0; 1], α = [1; 1.8], l = 1.0 m, and δ = 10−4 m — are
presented in Figs. 1 and 2.

As is clear from Fig. 1, the pressure-distribution curve becomes more convex with growth in the fractal di-
mension of the porous medium α, i.e., the medium’s resistance grows.

As follows from Fig. 2, the rate of flow of the fluid through the porous medium strongly depends on the
fractal dimension α. All other things being equal, the flow rate of the fluid sharply drops with increase in α.

Thus, as the investigations carried out demonstrate, neglect of the factor of fractal structure of a porous me-
dium may cause large errors in studying the filtration of a fluid.

Fig. 1. Curves of distribution of the pressure P ⁄ P2 along ξ (in dimensionless
units): 1) α = 1; 2) 1.2; 3) 1.4; 4) 1.8.

Fig. 2. Change in Q ⁄ Q0 as a function of the fractal dimension α (in dimen-
sionless units).
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NOTATION

a0, constant coefficient; b1 and C, constants of integration; f, cross-sectional area, m2; h, permeability of a po-
rous medium, m2; l, bed length, m; P, pressure, MPa; P1, pressure at the external boundary, MPa; P2, bottom-hole
pressure, MPa; Q, rate of flow of the fluid through an inhomogeneous porous medium with a fractal structure, m3/sec;
Q0, rate of flow of the fluid through an inhomogeneous porous medium without a fractal structure, m3/sec; t, variable
parameter; x, coordinate; y(ξ), fractional integral; α, fractal dimension of a porous medium; δ, sand-grain size, 10−4 m;
Γ, Euler gamma function; µ, dynamic viscosity of the fluid, cP; ρ, density of the fluid, kg/m3; ξ, dimensionless coor-
dinate. Subscripts: 0, without a fractal structure; 1, bottom hole; 2, supply.
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