Journal of Engineering Physics and Thermophysics, Vol. 78, No. 4, 2005

STATIONARY FILTRATION IN A FRACTAL INHOMOGENEOUS POROUS MEDIUM

B. A. Suleimanov,^a É. M. Abbasov,^a and A. O. Efendieva^b

The case of one-dimensional stationary filtration in an inhomogeneous porous medium with a fractal structure has been investigated. The fluid was assumed to be volumetrically incompressible. It has been shown that the resistance of the medium grows with increase in the fractal dimension α , whereas the flow rate of the fluid sharply drops.

Study of filtration in porous media with a fractal structure requires that the scope of ordinary geometric representations be exceeded and the methods of fractal theory be used [1-7]. Not uncommon are cases of disagreement of the results obtained by standard theoretical investigations with practice [3]. Apparently, the reason is that the fractal structure of a porous medium is disregarded, although in the majority of cases it has a fractal structure.

Study of filtration in a porous medium with a fractal structure has been the focus of [2, 3, 5, 6]. However, the state-of-the art of development and exploitation of oil pools and gas wells requires its further development. Therefore, study of filtration in porous media with a fractal structure and determination, on this basis, of the properties of systems is of both scientific and practical interest.

In this work, we consider the case of one-dimensional stationary filtration in an inhomogeneous medium with a fractal structure. The fluid will be assumed to be volumetrically incompressible; then the original equation will have the form [1, 2]

$$\frac{d}{dx}\left(\frac{ka_0}{\mu}\rho\frac{d^{\alpha}P}{dx^{\alpha}}\right) = 0.$$
⁽¹⁾

The boundary conditions are

$$P|_{x=0} = P_1, \quad P|_{x=l} = P_2.$$
 (2)

Integrating (1), we obtain

$$\frac{d^{\alpha}P}{dx^{\alpha}} = C.$$
(3)

Integration of Eq. (3) is by the methods of integration of differential equations of fractional order according to the following formula [6]:

$$y(\xi) = b_1 \frac{\xi^{\alpha - 1}}{\Gamma(\alpha)} + \int_0^{\xi} \frac{(\xi - t)^{\alpha - 1}}{\Gamma(\alpha)} f(t, y) dt.$$

^a"Gipromorneftegaz" State Research and Production Institute, 88 Zardabi Ave., Baku, Az1012, Azerbaijan Republic; ^bInstitute of Mathematics and Mechanics, National Academy of Sciences of the Azerbaijan Republic, Baku, Azerbaijan Republic. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 78, No. 4, pp. 194–196, July–August, 2005. Original article submitted April 21, 2004; revision submitted October 12, 2004.

1062-0125/05/7804-0832 ©2005 Springer Science+Business Media, Inc.

UDC 532.546

Fig. 1. Curves of distribution of the pressure P/P_2 along ξ (in dimensionless units): 1) $\alpha = 1$; 2) 1.2; 3) 1.4; 4) 1.8.

Fig. 2. Change in Q/Q_0 as a function of the fractal dimension α (in dimensionless units).

From Eq. (3) of fractional order with account for (2) we obtain [4, 6]

$$\frac{P}{P_2} = \beta + (1 - \beta) \xi^{\alpha}, \qquad (4)$$

where $\xi = x/l$ and $\beta = P_1/P_2$.

The flow rate of the fluid for media with a fractal structure may be determined according to Darcy's law [1]:

$$Q = -\frac{ka_0}{\mu} f \frac{d^{\alpha} P}{dx^{\alpha}}.$$
(5)

From (5) with account for (3) and (4) we will have [6]

$$Q = \alpha \frac{ka_0}{\mu} f \frac{P_1 - \Gamma(\alpha) P_2}{l^{\alpha}}, \qquad (6)$$

where $l^{\alpha} = (l/\delta)\delta^{\alpha}$.

Equation (6) may be reduced to the form

$$\frac{Q}{Q_0} = \frac{\alpha a_0 \left[\beta - \Gamma\left(\alpha\right)\right]}{\left(\beta - 1\right) l^{\alpha - 1}}.$$
(7)

The results of numerical calculations from formulas (4) and (7) for the following values of the parameters — $P_1 = 15$ MPa, $P_2 = 10$ MPa, $\beta = 1.5$, $a_0 = 1$ m^{α -1}, $\xi = [0; 1]$, $\alpha = [1; 1.8]$, l = 1.0 m, and $\delta = 10^{-4}$ m — are presented in Figs. 1 and 2.

As is clear from Fig. 1, the pressure-distribution curve becomes more convex with growth in the fractal dimension of the porous medium α , i.e., the medium's resistance grows.

As follows from Fig. 2, the rate of flow of the fluid through the porous medium strongly depends on the fractal dimension α . All other things being equal, the flow rate of the fluid sharply drops with increase in α .

Thus, as the investigations carried out demonstrate, neglect of the factor of fractal structure of a porous medium may cause large errors in studying the filtration of a fluid.

NOTATION

 a_0 , constant coefficient; b_1 and C, constants of integration; f, cross-sectional area, m^2 ; h, permeability of a porous medium, m^2 ; l, bed length, m; P, pressure, MPa; P_1 , pressure at the external boundary, MPa; P_2 , bottom-hole pressure, MPa; Q, rate of flow of the fluid through an inhomogeneous porous medium with a fractal structure, m^3/sec ; Q_0 , rate of flow of the fluid through an inhomogeneous porous medium without a fractal structure, m^3/sec ; t, variable parameter; x, coordinate; $y(\xi)$, fractional integral; α , fractal dimension of a porous medium; δ , sand-grain size, 10^{-4} m; Γ , Euler gamma function; μ , dynamic viscosity of the fluid, cP; ρ , density of the fluid, kg/m³; ξ , dimensionless coordinate. Subscripts: 0, without a fractal structure; 1, bottom hole; 2, supply.

REFERENCES

- 1. O. Yu. Dinariev, Motion of liquids and gases in porous media with fractal geometry, *Mekh. Zhidk. Gaza*, No. 5, 101–109 (1992).
- A. V. Mal'shakov, Equations of hydrodynamics for porous media with a void structure possessing fractal geometry, *Inzh.-Fiz. Zh.*, 62, No. 3, 405–414 (1992).
- 3. R. P. Meilanov, The theory of filtration in porous media with a fractal structure, *Pis'ma Zh. Tekh. Fiz.*, **22**, Issue 23, 10–12 (1996).
- 4. R. R. Nigmatulin, Fractional integral and physical interpretation of it, *Teor. Mat. Fiz.*, **90**, No. 3, 354–368 (1992).
- 5. A. I. Olemskoi and A. Ya. Flat, Use of the concept of fractal in the physics of a condensed medium, *Usp. Fiz. Nauk*, **163**, No. 12, 1–50 (1993).
- 6. S. G. Samko, A. A. Kilbas, and O. I. Marichev, *Integrals and Derivatives of Fractional Order and Some Applications of Them* [in Russian], Nauka i Tekhnika, Minsk (1987).
- 7. B. A. Suleimanov, Influence of the interaction between the particles of the dispersed phase on the rheology of fractal inhomogeneous disperse systems, *Kolloidn. Zh.*, **66**, No. 2, 283–286 (2004).